Environmentally Optimal, Nutritionally Sound, Protein and Energy Conserving Plant Based Alternatives to U.S. Meat

Original article by Gidon EshelPaul StainierAlon Shepon & Akshay Swaminathan published by Scientific Reports


Because meat is more resource intensive than vegetal protein sources, replacing it with efficient plant alternatives is potentially desirable, provided these alternatives prove nutritionally sound. We show that protein conserving plant alternatives to meat that rigorously satisfy key nutritional constraints while minimizing cropland, nitrogen fertilizer (Nr) and water use and greenhouse gas (GHG) emissions exist, and could improve public health. We develop a new methodology for identifying nutritional constraints whose satisfaction by plant eaters is challenging, disproportionately shaping the optimal diets, singling out energy, mass, monounsaturated fatty acids, vitamins B3,12 and D, choline, zinc, and selenium. By replacing meat with the devised plant alternatives—dominated by soy, green pepper, squash, buckwheat, and asparagus—Americans can collectively eliminate pastureland use while saving 35–50% of their diet related needs for cropland, Nr, and GHG emission, but increase their diet related irrigation needs by 15%. While widely replacing meat with plants is logistically and culturally challenging, few competing options offer comparable multidimensional resource use reduction.


Agriculture is among the key ways humans impact1—mostly adversely2—natural environments. While livestock production contributes disproportionally to these impacts both per kilocalorie (kcal) and per gram (g) protein3,4,5, producing plant based items for direct human consumption is less resource intensive6. Plant-based alternatives to meat are thus potentially desirable7, provided they can be rigorously shown to quantitatively enjoy nutritional and environmental consequences that are at least benign, but preferably beneficial8,9,10,11. We have recently quantified the generalized losses associated with feed-to-food conversion in the U.S. food system and the potential environmental and food security benefits of eliminating these losses12,13,14. We have also identified the primary reason for these losses, large land use disparities between animal based products and their nutritionally equivalent plant based alternatives13, and quantified the resource use and nutritional outcomes expected from a nutritionally sound, protein equivalent plant replacements of beef in the U.S. diet12,14. Yet while beef is by far the most resource intensive12,13,14 poultry and pork also use more resource than most plant alternatives15,16, and replacing them is likely to further improve the environmental performance of food systems17.

Despite the above expectations, the nutritional and environmental consequences of replacing all meat in the mean U.S. diet with plant alternatives in a nutritionally rigorous manner have been only preliminarily explored. We thus employ linear programming to devise hundreds of plant based partial diets that replace beef alone or its sum with pork and poultry, the dominant U.S. meat types18. All minimize combined environmental costs (as described shortly and in the Methods section) while satisfying 44 nutritional constraints, but each comprises a distinct randomly chosen subset of available plant items (a randomization based solution strategy often called Monte Carlo, hereafter MC).

As in our earlier work cited above, here “replacing” means exact replacement of the protein content of the forgone meat (i.e., protein is an equality constraint) while satisfying 43 additional inequality constraints of both signs that collectively ensure the plant replacement diets are at least as nutritious as the meat they replace. The protein conservation does not imply the current protein intake is optimal, a claim we do not make. Rather, it is simply meant to facilitate meaningful “per g protein” nutritional and environmental comparison with the current situation. With the above definition of “replacement”, the first step of the calculation is quantifying the nutritional contributions of the replaced meat(s) to the mean American diet. We do that by combining mean 2000–2016 Department of Agriculture (USDA) consumption data18 and per g nutritional composition19. Plant based replacements must therefore supply the 12 + 4 + 14 ≈ 30 g protein d−1 Americans currently derive from beef, pork, and poultry respectively (out of corresponding approximate total masses of 70 + 30 + 74 g meat d−1), or the 12 g protein d−1 due to beef alone.


Read the rest of the report.

You must be a registered member to view the CADEIO Care for Creation directory.


Thank You!