A Drier Future Sets the Stage for More Wildfires
Original article by Jessica Merzdorf at NASA’s Global Climate Change
This article is part of a series that explores NASA research into Earth’s fresh water and surveys how those advances help people solve real world problems. Learn more.
November 8, 2018 was a dry day in Butte County, California. The state was in its sixth consecutive year of drought, and the county had not had a rainfall event producing more than a half inch of rain for seven months. The dry summer had parched the spring vegetation, and the strong northeasterly winds of autumn were gusting at 35 miles per hour (56 kilometers per hour) and rising, creating red flag conditions: Any planned or unplanned fires could quickly get out of control.
Sure enough, just before daybreak, strong winds whipped a stray spark from a power line into an inferno. The Camp Fire became the most destructive fire in California’s history, scorching approximately 240 square miles (622 square kilometers), destroying nearly 14,000 buildings, causing billions of dollars in damage and killing 88 people. Later the same day, the Woolsey Fire broke out in Los Angeles County, burning 150 square miles (about 390 square kilometers) and killing three.
Droughts can create ideal conditions for wildfires. Lack of rain and low humidity dry out trees and vegetation, providing fuel. In these conditions, a spark from lightning, electrical failures, human error or planned fires can quickly get out of control.
Global climate change is predicted to change precipitation and evaporation patterns around the world, leading to wetter climate in some areas and drier in others. Areas that face increasingly severe droughts will also be at risk for more and larger fires. Several NASA missions collect valuable data to help scientists and emergency responders monitor droughts and fires. Some instruments monitor water in and below the soil, helping to assess whether areas are moving toward dangerous droughts. Others watch for heat and smoke from fires, supporting both research and active disaster recovery.
Understanding how fires behave in dry conditions can help firefighters, first responders and others prepare for a hotter, drier future.
Climate Change: Not Just Wet
Earth’s warming climate is forecasted to make global precipitation patterns more extreme: Wet areas will become wetter, and dry areas will become drier. Areas such as the American Southwest could see both reduced rainfall and increased soil moisture evaporation due to more intense heat, and in some cases, the resulting droughts could be more intense than any drought of the past millennium.